US009252805B1

a2z United States Patent (10) Patent No.: US 9,252,805 B1
Abali et al. 45) Date of Patent: Feb. 2, 2016
(54) PARALLEL HUFFMAN DECODER 5,703,793 A * 12/1997 Wisecccoevnnn. GO6F 12/0207
375/E7.093
(71) Applicant: International Business Machines 5,757,295 A % 5/1998 Bakhmutsky H031§I4;71%8
Corporation, Armonk, NY (US) 5,798,719 A 8/1998 Wise
5,821,885 A 10/1998 Wise
(72) Inventors: Bulent Abali, Tenafly, NJ (US); 5,825,314 A * 10/1998 Kawauchi H031\’I33‘/1‘}é;
Bartholomew Blaner, Underhill Center, 5841380 A * 11/1998 Sita oo HO3M 7/425
VT (US) 341/67
6,311,258 B1* 10/2001 Gibson GOG6F 9/3879
(73) Assignee: INTERNATIONAL BUSINESS 711/200
MACHINES CORPORATION, 6,344,808 B1* 22002 Tarukiccooovvvvvvne. H031;’£‘Z;46‘(5)
Armonk, NY (US) 6,603,413 B2* 82003 Igarashi ...ccce.... HO3M 7/40
341/65
(*) Notice: Subject to any disclaimer, the term of this 7,283,591 B2* 10/2007 Ruehleccccove..... HO04B 1/66
patent is extended or adjusted under 35 341/65
U.S.C. 154(b) by 0 days. 7,736,946 B2* 6/2010 Seppala BS1B 7/0041
257/659
(21) Appl. No.: 14/672,135 (Continued)
- OTHER PUBLICATIONS
(22) Filed: Mar. 28, 2015 Wei et al., “A Parallel Decoder of Programmable Huffman Codes,”
IEEE Transactions on Circuits and Systems for Video Technology,
(51) Int.Cl vol. 5, No. 2, Apr. 1995, pp. 175-178.
HO3M 7/40 (2006.01) (Continued)
(52) US.CL
CPC .o HO03M 7/40 (2013.01) Primary Examiner — Linh Nguyen
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Jennifer R. Davis;
CPC HO3M 7/30, HO3M 7/3059, HO3M 7/40, Otterstedt, Ellenbogen & Kammer, LLP
HO3M 7/425; HO3M 7/4031; HO3M 7/46;
HO3M 7/42; HO3M 7/4081; HO3M 7/6005; (57) ABSTRACT
HO3M 7/6023; HO4N 19/61; HOAN 19/42; A main data input and a lookahead input are held in a holding
HO4N 19/117; HO4N 19/124; HO4N 19/13; register. Consecutive overlapping portions of the main data
HO4N 19/146 input and the lookahead input are provided to a plurality, M,
USPC ..o 341/65, 67, 106, 107, 375/E7.093, ot'half-decoders, which include a subset of frequently-occur-
375/E7.222, 240.21, 240.25, 240.16, ring code words of a Huffman code. When no code word not
375/240.11, 240.05 available in the half-decoders is encountered, the half-decod-
S lication file fi let h history. ers decode, in parallel, in a single clock cycle, M of the
c¢ apphication ftie for coffipiete search stoty frequently-occurring code words. When a code word not
(56) References Cited available in the half-decoders is encountered, input intended

U.S. PATENT DOCUMENTS

5,428,356 A * 6/1995 Ozaki HO3M 7/425
341/65
5,663,725 A * 9/1997 Jang ... HO3M 7/425
341/67

for a corresponding one of the half-decoders, which input
includes the code word not available in the corresponding one
of the half-decoders, is applied to an input of a full decoder
implemented in ternary content-addressable memory. The
full decoder includes all code words of the Huffman code.

20 Claims, 10 Drawing Sheets

ON-2

39 ?f:w ﬁ
| 89

| LOOKAHEAD REGISTER 397

27BIT
LOOKAHEAD

!

0

HOLDING REGISTER 395

312
OMN-1 N-1 1N

M |M M

B 3

MUX HALF
ANY N+1BIT pecoer| [er 4 N
INTERVAL (SRAM) H H
10 \ H
= M M2 304 1 36 1 308
FULL 1 1
pEcopeR 1 1
(TCAM) 1 !
1
. H
_________________ I HALFDECODER | _ _ _ _ _ _ __ _____
l’ “y | INCOMPLETE | ,’ 1
. H
T T T :
1 1 1
! |mgg VauDoEcoDes wer 11 LR 1) DELARDIALD
_________________ 2 A N R
13 U ERY HL__Hi b
IR Miss,

Time TO: Hit Hit Hit Hit

US 9,252,805 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,189,678 B2 5/2012 Valmiki
8,412,533 B2* 4/2013 Choo ... HO3M 7/4006
341/200
OTHER PUBLICATIONS

Chang et al., “Direct mapping architecture for JPEG Huffman
decoder,” IEE Proc.-Commun., vol. 153, No. 3, Jun. 2006 p. 333-340.

Lan, “Power evaluation and design of table partition approach for
JPEG Huffman decoders,” Master’s Thesis, Department of Electrical
Engineering, Engineering, National Taiwan University of Science
and Technology, 2006 (Chinese with English Abstract), pp. 1-79.
Lefurgy et al., “Evaluation of a high performance code compression
method.” Proceedings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture. IEEE Computer Society, 1999, pp.
1-10.

* cited by examiner

U.S. Patent Feb. 2, 2016 Sheet 1 of 10 US 9,252,805 B1

~E
s
25
~ &
< =
(@)
=
S o
—
- QO
LU m
%2
=%

US 9,252,805 B1

Sheet 2 of 10

Feb. 2, 2016

U.S. Patent

¢ OIA

S119 € A9 (4OM3IA0D L1437 L4IHS ANV “d, = 1INS3Y

a

("'gvd) LLLOLOOLL LNdNI

ANIVA AN
NI WAS d40M3aod
191y, XXXXX0
NG € “d, XXXO0LL
Siviran: XXXXO0L

WV WYO

US 9,252,805 B1

Sheet 3 of 10

Feb. 2, 2016

U.S. Patent

£ DIA
HIvd (NIT'IONVLSIA) O TwH3ALIT HIvd (NIT'IONVLSIO) YO TvH3aLIN
1 INYT AQY3Y Z1 dNYO0T AYYNOILDIA Z1¥04 AQY3Y SINV1 TYNAIAIONI 0 3NV AQY3Y Z1
oie NI d30¥1d ANV 214 SY 030023a SA¥OMIA0D DA
HIONINDIS TINF/ATVH + NOILOT T3S ¥IA0D3A
1 1
1LO XNW ANY (WvoL)
JONVLSIQ/NI VAL ¥300930
N4 S
90¢ 90¢ Y0 20¢ o >
I % I I oie
¥300030 e ¥300930 w30003q| | (Wv¥S) TVASSINI
vh h vH ¥300030 118 L+N ANY
41vH XN
LN+ £6¢ 16E L-d+N:d N:L N0 L-N+AO N
< P
PN+ _>__ a S6¢ Y3LSI9TY ONITTOH
Y]
AQv¥aHYX001 76€ ¥3LSI9TY AVIHYIOOT
1822 | goe N
Z-N0

US 9,252,805 B1

Sheet 4 of 10

Feb. 2, 2016

U.S. Patent

o ==,

IH JH IH HH 0L swi]
ww__\/_ A A _\n_l
H UH HH t Al
Taaw | Wl N waw] o]
ITVANI G3V1030 | “ “ I $300030 AIVA I
I Ll I
VU o3Tdwoont 1 Y !
T ——. S Em EE EE EE e e EE e e EE B e Ee e e mm mm @
| Y3IA00IC4TVH I
i i
| | 1
I I (WyDl)
I I ¥30003a
I I TIn4 W
808 I 90¢ I $0g 208
N “ N “ N N 0le
wigooaa|l .., 1 |w3a0o3a| w3ao0aa | Wwes) RN
gy \ oo) | [eaco03a LIgI+N ANV
A L 4TvH XMW
LN+ €6 16g b-d+N-d Nl 1-N:0 L-N+N:0 N
W > 218
N _2_ a 36¢ ¥3LSIDTFY ONIGTOH 0
]
— tr DIA
QVIHWYIOOT 76¢ ¥LSI9TY AYIHYNOOT
U8 1Z | gge
N) —=— 66¢

N0

US 9,252,805 B1

Sheet 5 of 10

Feb. 2, 2016

U.S. Patent

§ DI

AVHS AYLN3
8vC¢ NI LON
9l SQYOM3IA0d

FAY NvYS
T AINT 842 NI
9, - SQ¥OMIA0D

cla
20l

8v02 AONIND3IH4
9601 JOGNAS

¢ 2618
JOLINAS
¥V ONIJOON3 v8edl
SLig#

US 9,252,805 B1

Sheet 6 of 10

Feb. 2, 2016

U.S. Patent

NVHS AYLNS
8vC NI 1ON
S@YOM3IA0?

- -

NVYS
AY1IN3 8v¢ NI
SAYOM3A02

9 OIA

US 9,252,805 B1

Sheet 7 of 10

Feb. 2, 2016

U.S. Patent

«430023d-T1N4
NSV
-343H LON,

L OIA

4—

vivd

WVHS
d3d023d-41vH

daayv

\oo\o____________

N

.......... o

~

J4OM3d02 ONOT 1Id S1

US 9,252,805 B1

Sheet 8 of 10

Feb. 2, 2016

U.S. Patent

SL1191041INOD ANY ‘U8 |0quAS ‘loquiAg

80¢ "90¢ '70¢ 20€

=

& DIA

A

318VL HLONIT V311 103138
TvH3LIT SI108WAS SNOIATYd FHL 4
3791 JONVLSIA 13313S
HLON3T SIT0dWAS SNOIAFYEd IHL 4
-IX3LINOD A9 A3LOF13S S13A0I IONVLSIA

LO)|
<O

AN

e
S

768 31av1
JONVLSIA

668 31gvL
HLONI/VHALIT

(¢1)sLigvylX3 + (asL)adom3aaond

US 9,252,805 B1

Sheet 9 of 10

Feb. 2, 2016

U.S. Patent

6 DIH
6. 10¢ 100 6¢c 09 700 dny00]| 8p0J SUBISIP [8A8] pug
12 8¢ 66'0 L 8¢ 960 dnyoo| 8p02 souE)sIP [9A8) IS
29¢ g6 00 chl 0¢ 600 dnyoo| 8poo yibus| jaAs) pug
<9 9l 860 9 9l G6'0 dnyoo| 8poo yibus| jars) Is|
z671e7 Augnueddul
e
699¢ ¢6¢ 100 069 9/ 600 dnyoo| 8p00 8OUBJSIP [9A8] PUZ
ge 9¢ 660 ee 9¢ G6'0 dnyoo| 8p02 souE)sIP [9A8) IS
0chl 174’ 100 L1 JAY 00 dnxoo| 8poo yibus| jaAs| pug
9'¢l vl 660 9¢Cl vl 860 dnxoo| 8poo yibus| jars) Is|
Z6-gnd dul
a|qissasdwod Alyby
119 6l 100 G9¢ g6 €00 dnyoo| 8p00 8OUBJSIP [9A8] PUZ
L'l 8¢ 660 L'l 8¢ 160 dnxoo| 8p00 BOUBISIP [9A8) IS
0Ll 16¢ 000 174 68 00 dnyoo| 8poo yibus| jaAs) pug
¢S 6l 00l ¢S 6l 860 dnyoo| 8poo yibus| jars) Is|

dny00)/S8JAqQ djno dny00}/S|IAQ dul uoiOBl)

dny00)/S81AQ djno dny00|/S8IAQ dul uonIel)

o|qe} (2°'0})

o|qe} (9°6)

Z61x) gzoole dul

1X9)

U.S. Patent Feb. 2, 2016 Sheet 10 of 10 US 9,252,805 B1

FiG. 10

US 9,252,805 B1

1
PARALLEL HUFFMAN DECODER

FIELD OF THE INVENTION

The present invention relates to the electrical, electronic
and computer arts, and, more particularly, to system architec-
ture and the like.

BACKGROUND OF THE INVENTION

A Huffman code is an optimal prefix code found using an
algorithm developed by David A. Huffman. More common
symbols are typically represented using fewer bits than less
common symbols. DEFLATE is a data compression algo-
rithm that uses a combination of the [.Z77 algorithm and
Huffman coding, and is specified in RFC 1951. One exem-
plary Huffman decoder is defined in the DEFLATE RFC
1951.

SUMMARY OF THE INVENTION

Principles of the invention provide techniques for a parallel
Huffman decoder. In one aspect, a parallel Huffman data
decoder, for decoding data encoded in accordance with a
Huffman code, includes a holding register having a main
portion holding a main data input, a lookahead portion hold-
ing a lookahead input, and a plurality of outputs; as well as a
plurality, M, of half-decoders, each having an input coupled
to a corresponding one of the plurality of outputs of the
holding register, and an output. The inputs each obtain from
the outputs of the holding register consecutive overlapping
portions of data in the main portion and the lookahead portion
of'the holding register. Also included is a full decoder imple-
mented in ternary content-addressable memory. The full
decoder has an input selectively connectable to obtain a given
one of the overlapping portions of data, and an output. A
further element includes a decoder selection and sequencing
unit having a plurality of inputs coupled to the outputs of the
half-decoders and the output of the full decoder, a selection
output that controls the selective connection of the full
decoder input, and a plurality of output lanes. The full
decoder includes all code words of the Huffman code; the
half-decoders includes a subset of frequently-occurring code
words of the Huffman code; and the half-decoders decode, in
parallel, in a single clock cycle, when no code word not
available in the half-decoders is encountered, M of the fre-
quently-occurring code words. When a code word not avail-
able in the half-decoders is encountered, the decoder selec-
tion and sequencing unit causes to be applied to the input of
the full decoder, input intended for a corresponding one of the
half-decoders, which input includes the code word not avail-
able in the corresponding one of the half-decoders.

In another aspect, a design structure is tangibly embodied
in a non-transitory machine readable medium for designing,
manufacturing, or testing an integrated circuit, and the design
structure includes a parallel Huffman data decoder as just
described.

In still another aspect, an exemplary method for decoding,
in parallel, data encoded in accordance with a Huffman code,
includes holding in a holding register a main data input and a
lookahead input; and providing to a plurality, M, of half-
decoders, consecutive overlapping portions of the main data
input and the lookahead input. The half-decoders include a
subset of frequently-occurring code words of the Huffman
code. When no code word not available in the half-decoders is
encountered, a further step includes decoding, in parallel, in a
single clock cycle, M of the frequently-occurring code words.

10

20

25

30

40

45

55

2

When a code word not available in the half-decoders is
encountered, a further step includes applying, to an input of a
full decoder implemented in ternary content-addressable
memory, input intended for a corresponding one of the half-
decoders, which input includes the code word not available in
the corresponding one of the half-decoders, the full decoder
including all code words of the Huffman code.

As used herein, “facilitating” an action includes perform-
ing the action, making the action easier, helping to carry the
action out, or causing the action to be performed. Thus, by
way of example and not limitation, instructions executing on
one processor might facilitate an action carried out by instruc-
tions executing on a remote processor, by sending appropriate
data or commands to cause or aid the action to be performed.
For the avoidance of doubt, where an actor facilitates an
action by other than performing the action, the action is
nevertheless performed by some entity or combination of
entities.

Design structure aspects can be implemented using a com-
puter program product including a computer readable storage
medium with computer usable program code. Furthermore, a
design structure or design process can be implemented via a
system (or apparatus) including a memory, and at least one
processor that is coupled to the memory and operative to
implement the design structure or process.

Techniques of the present invention can provide substantial
beneficial technical effects; for example, requiring less hard-
ware resources and/or less chip area than prior techniques, via
use of half decoders rather than full decoders. Note that, as
used herein, “half decoders” are not necessarily exactly %2 the
size of full decoders.

These and other features and advantages of the present
invention will become apparent from the following detailed
description of illustrative embodiments thereof, which is to
be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows aspects of Huffman encoding, as known from
the prior art;

FIG. 2 shows an exemplary ternary content-addressable
memory (TCAM)-based decoder, according to an aspect of
the invention;

FIG. 3 shows an embodiment of a parallel Huffman
decoder, according to an aspect of the invention;

FIG. 4 shows further aspects of a parallel Huffman
decoder, according to an aspect of the invention;

FIGS. 5 and 6 show symbol distribution, according to
aspects of the invention;

FIG. 7 shows a technique for dealing with code words not
handled by the half-decoder, according to an aspect of the
invention;

FIG. 8 shows a further half-decoder aspect of the invention;

FIG. 9 shows exemplary performance data, according to an
aspect of the invention; and

FIG. 10 is a flow diagram of a design process used in
semiconductor design, manufacture, and/or test.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

As noted a Huftfman code is an optimal prefix code found
using an algorithm developed by David A. Huffman. More
common symbols are typically represented using fewer bits
than less common symbols. DEFLATE is a data compression
algorithm that uses a combination of the LZ77 algorithm and

US 9,252,805 B1

3
Huffman coding, and is specified in RFC 1951. One exem-
plary Huffman decoder is defined in the DEFLATE RFC
1951.

Furthermore in this regard, data is encoded in blocks, as
follows:

<Block><Block><Block>

There may be, for example, a three-bit header in each
block. The first bit may have a value of one if the given block
is the last block in a sequence of blocks, or a value of zero
otherwise (i.e., where more blocks are expected). The second
and third bits may have the values 00 for a raw block, 01 for
a fixed Huffman table (pre-agreed), and 10 for a dynamic
Huffman table, stored in the block.

Compression is achieved by duplicate string elimination
(LZ encoding) and use of a weighted symbol tree (Huffman
encoding). Regarding duplicate string elimination, consider
the following:

N~

<Block><...S..><..S..><.P..P.>

As indicated by the arrows, repeated strings are replaced by
a pointer back to the first occurrence of the string. The first
copy of the string is retained. Here, subsequent occurrences of
“S” are replaced by a pointer back to the first occurrence of
“S” and subsequent occurrences of “P” are replaced by a
pointer back to the first occurrence of “P” The pointer would
include information such as “go back 100 characters and copy
10 bytes.” The pointers are smaller than the original data and
thus, compression can be achieved. “Zipping” a file is a non-
limiting example. This is a first phase; Huffman encoding is
carried out in a second phase.

The encoded strings have a length from 3-258 bytes and a
distance from 1-32768 bytes (sliding window).

Referring now to FIG. 1, Huffman encoding uses fewer bits
to encode more common symbols. The bit-sequence length
for codes is inversely proportional to symbol frequency. The
symbols A, B, P, and Q can be encoded, for example, as
follows:

Symbol:code=A:0, B:10, P:110, Q:111.

Huffman encoding is prefix-free; i.e., no code’s bit
sequence is a prefix for another. Thus, B:10—C:101 is not
possible.

Furthermore regarding the prefix-free property, when
encoded bits are concatenated there is no ambiguity about
when one symbol starts and stops. Therefore, no markers
separating symbols are needed. The sequence PABQ can thus
be encoded as 110010111. However, this complicates con-
struction of parallel decoder because it is a bit serial process.

Furthermore regarding DEFLATE, the Huffman encoder
encodes symbols into codes. Two hundred eighty-eight sym-
bols encode literals and pointer lengths, as follows:

0-255: Literals (e.g. raw ASCII will be here)

256: end of a deflate block (terminal symbol)

257-285: match length of 3-258 bytes+extra bits (not a
literal but a string (match) length for the pointer that will
follow this codeword).

The following table shows string match lengths:

SYMBOL EXTRA BITS MATCH LENGTH
256 0 3

257 0 4

20

30

35

40

50

55

[

0

o

5

-continued
SYMBOL EXTRA BITS MATCH LENGTH
265 1 11-12
269 2 19-22
284 5 227-257
285 0 258 (for run length encoding)
286-287 reserved

Note that the symbols are first “Huffmanized” and then
extra bits are appended to encode the match len (length).

Regarding distance, for pointer encoding, <Match Length>
is always followed by <Distance>. There are 32 distance
encodings, as follows:

Symbols Distances (bytes)
0-3 1-4
4-5 5-8 + 1 extra bit
6-7 9-16 + 2 extra bits
28-29 16385-32768 + 13 extra bits
30-31 reserved

FIG. 2 shows an exemplary TCAM-based decoder. Any
kind of TCAM can be used to implement one or more
embodiments. The input is the bit sequence 110010111
whose first three symbols are PAB. This is used as a key to
query the content-addressable memory (CAM). The CAM
entries have “ternary digits” with zero, one, or “don’t care”
(X) values. The first “hit” in the CAM is for 110XXX which
corresponds to the symbol P, having a three-bit length. The
input is then shifted left three bits, and the next “hit” is for
0XXXXX which corresponds to the symbol A, having a one-
bit length. The input is then shifted left one bit, and the next
“hit” is for 10XXXX which corresponds to the symbol B,
having a two-bit length.

Consider now CAM array widths. Note that a “bit” has
value of zero or one while a (ternary) “digit” in this context
can have values of zero, one, or don’t care (X). The
DEFLATE max bit sequence length is 15 bits. It may be
desirable to prefix each CAM word with either digit O (signi-
fying that this is a “Matchl.en” (match length) code) or 1
(signifying that this is a Distance code)—that is, if both the
Literal/Len and Distance tables are stored in the same TCAM.
Therefore, the TCAM part should be at least 16 digits wide
excluding any error correcting code (ECC).

Consider now CAM and RAM array lengths. With 288
literal/length symbols and 32 distance symbols, 288+32=320
entries, implying 512 TCAM entries (rounding up to the next
power of two). Note that rounding up is optional; most tech-
nologies are sized in powers of two, however, this is not
required and the skilled artisan will appreciate that of frac-
tional sizing is available, rounding up is not necessarily
needed.

Now, with regard to the RAM array width, in one or more
non-limiting embodiments, if symbols and code bit-lengths
are stored in the RAM, assume 9 bits for 288 literal/len
symbols (“len” is used herein as a shorthand for “length™),
assume 5 bits for distance symbols, and the RAM word will
contain either literal/len or distance—max(9,5)=9 bits. With a
one-bit prefix to distinguish literal/len from distance sym-
bols, therefore, 10 bits will be sufficient for identifying literal/
len and distance symbols. The input shift values can be stored
in the RAM as well. In this regard, the max bit-length of the

US 9,252,805 B1

5

CAM word (Huffman code)=15, while 13 extra bits are used
for distance codes; thus, 15+13=28 bits. This means that input
may be shifted by 28 positions or less—log,(28)=5 bits
(rounding up to nearest integer) to store in the RAM entry.
The total is thus 10+5=15 bits for RAM excluding ECC. In
some instances, additional RAM bits may be needed; for
example, for controlling decoder state machines and the like.

If symbols and code bit-lengths are stored in a separate
SRAM, then only the address of the separate SRAM needs to
be stored, implying that log,(512)=9 bits is the RAM portion
of the TCAM excluding ECC.

Consider now the problem of decoding a bit sequence such
as the following:

110010101011001100100100100101001111

Due to the variable length coding (VLC), data boundaries
are not easily identified. A simple serial decoder decodes 1 bit
at a time from left to right which is too slow. One or more
embodiments advantageously decode, for example, up to 128
bit strings in a single cycle.

Reference should now be had to FIG. 3. Data 399 is a
stream of bits contained Huffman-encoded symbols, which
are of variable length (say, 1-15 bits, or perhaps 28 bits when
certain extra bits are included). Because the codes are variable
length, it is not known a priori where the boundaries are. It is
not known where one symbol stops and another one starts;
determining these boundaries is part of the decoding process.
Since the symbols are variable length, and since the symbols
are coming in one clock cycle after another, a symbol may
span a clock boundary. A symbol may start in one “word” and
end in another “word” where the words are merely samples of
data taken each clock cycle. In a non-limiting example, if
128-bit wide samples of data 399 are taken (i.e. M=128), and
supposing (purely for illustrative purposes as the symbols are
actual of variable length) each encoded symbol is ten bits
wide, an integer number of 10-bit symbols will not fit in the
128-bit slice of data; there will be 12 ten-bit symbols and
eight bits of the next symbol; the remaining two bits of that
symbol will arrive in the next clock cycle’s input. This is dealt
with in one or more embodiments via lookahead tap 389. In
particular, suppose the maximum code size N is 28 bits. In the
worst case, a symbol may start at the last bit of the M (e.g.
128) bits and continue for N-1 (e.g. 27) bits into the next
clock cycle. Therefore, an N-1=27 bit lookahead tap is
employed. The input data 399 is thus sampled in M (e.g. 128)
bit wide chunks with the bits numbered zero through M-1
(e.g. O through 127) and N-1 lookahead bits numbered zero
through N-2 (e.g., 0 through 26) are tapped.

An M (e.g. 128) bit wide sample of data 399 is fed to the
lookahead register 397, which holds same for one clock cycle
so that when it arrives at the holding register 395, it will be at
the same time as the lookahead data from tap 389, which was
notdelayed in lookahead register 397. The data in the holding
register 395, including the M (e.g. 128) bit wide sample of
data 399, numbered 391, and the data from lookahead tap
389, numbered 393, is fed to the half-decoders 302, 304,
306, . . . 308. In holding register 395, the bits in the M (e.g.
128) bit wide sample of data 399, numbered 391, are num-
bered zero to M-1 (e.g., 0 to 127), while the bits in the data
from lookahead tap 389, numbered 393, are numbered M
through M+N-1 (e.g., 128 to 155).

The half-decoders 302, 304, 306, . . . 308 contain the most
common code words (content replicated across all decoders).
The full-decoder 310 contains all the code words. The first
half decoder 302 is wired to bits 0 through N-1 (e.g. 27) of
holding register 395, the next half decoder 304 is wired to bits
1 through N (e.g. 28) ofholding register 395, and so on. In the
common case, all half-decoders simultaneously decode their

10

15

20

25

30

35

40

45

50

55

60

65

6

input slice. Each slice is N (e.g. 28) bits long, overlapping the
one on the left by 1 bit. In a non-limiting example, there are
128 half decoders. The decoding is speculative because the
code boundaries are not known a priori.

SRAMs are cheaper, smaller, and use less power than
TCAMs, thus making the use of SRAM-based half decoders
advantageous. Given the teachings herein, the skilled artisan
will be able to implement half decoders in, for example,
SRAM or dynamic random access memory (DRAM), as well
as full decoders in TCAM.

Reference should now be had to FIG. 9. The half decoders
will store the first level data (commonly found codes). The
more rarely found codes will be included only in the second
level data which will be stored in the Full Decoder according
to embodiments of the invention. The tables of FIG. 9 show
how often a code will not be found in the first level. For
example, for the inp_alice29_txt.gz benchmark, 98% of the
time, for the (9,6) table case, codes will be found in the first
level length code lookup, while only 2% of the time is resort
to the second level lookup necessary. FIG. 9 shows two dif-
ferent examples for three different benchmarks. In the (9,6)
table example, the first level table is SRAM with 2° entries of
literal/length and 2° entries of distance, while in the (10,7)
table example, the first level table is SRAM with 2'° entries of
literal/length and 27 entries of distance. In the (10,7) table
example, the value of 397 in the second column, second row
means that on average, every 397 bytes of input, the decoder
needs to consult the second level literal/length table. Note that
“inp_alice29_txt.gz” is a benchmark commonly used when
compressing text, and the other .gz files indicated are also
known benchmarks.

As seen in FIG. 4, if a half-decoder such as 306 cannot
complete its work (mis-decode because, in the example just
discussed regarding FIG. 9, it is one of the 2% of codes not
found in the first level), its input slice is multiplexed to the full
decoder (see “Miss” at time T1). The remaining half-decoder
outputs to the right (here, 308) are declared invalid because
their starting bit position is dependent on the incomplete
decoder output. The full-decoder decodes the mis-decoded
input slice in the next cycle.

Note that only a single input is shown to multiplexer 312
but in fact the entire output width of the holding register,
including the lookahead bits, is available to multiplexer 312
and the appropriate bits (corresponding to the half decoder
that has missed) are selected based on a selection signal from
selection unit 314, and are routed to full decoder 310. At the
bottom of FIG. 4, at time T0, the indicated half decoders are
successful (“Hit”); i.e., the codes were found and the output is
valid. At time T1, half decoder 306, for which the code was
not found, indicates a “Miss” which requires sending its input
to full decoder 310. The decoders to the right (e.g., 308)
cannot proceed because the code boundaries are not known
due to the failure of half decoder 306. The full decoder 310
provides the answer, and then, in time T2, the remaining half
decoders to the right can continue.

Once the full decoder completes, the remaining half-de-
coders follow suit (in the same cycle as the full-decoder or the
following cycle).

The decoder selection unit 314 identifies, from left to right,
the valid decodes out of many, eliminating “bogus™ decodes
crossing data boundaries.

FIG. 3 thus depicts an exemplary a parallel Huftman data
decoder including multiple (128 in a non-limiting example)
half-decoders 302, 304, 306, 308 (only a few are shown to
avoid clutter) constructed using static random access memory
(SRAM), and one full-decoder 310 constructed using a Ter-
nary CAM (TCAM). The parallel decoder of FIG. 3 specula-

US 9,252,805 B1

7

tively decodes up to 128 code words in parallel in one clock
cycle (as compared to only a few bits per cycle in current
systems). The half-decoders 302, 304, 306, 308 are con-
structed with SRAM, typically with 9-10 address inputs using
only 512 to 1024 frequent code words. The full codeword
decoder 310 is constructed using a Ternary CAM (TCAM)
containing all the code words including infrequent as well as
frequent ones. Note that the total number of entries in a full
Huffman decoder table (in the 1st and 2nd levels) will be as
follows (based on the zlib source code found at zlib dot net, “.”
rendered as “dot” to avoid inclusion of browser-executable
code.

The (9,6) case: 852 for length/literal+592 for dis-
tance=1444 total; compare that to a half decoder that
needs 2*¥*94+2%**6=576 total,

The (10,7) case: 1332 for length literal+400 for dis-
tance=1732 total; compare that to a half decoder that
needs 2*%1042*%7=1152 total.

The half-decoders 302, 304, 306, 308 each have 28 bit
inputs sampling the 128 bit data in one bit overlapping inter-
vals, therefore making speculation possible.

The full-decoder 310 has a 28 bit input multiplexed via
multiplexer 312 from one of M intervals of 28 bits from the M
bit data, while the M-bit data is extended by 27 bits with the
data from the next data cycle to be able to decode 28 bit data
crossing an M-bit boundary. A half-decoder effectively for-
wards its input to the full-decoder through the multiplexer
312 when it cannot decode the codeword; a decoder selection
unit 314 chooses the valid decoded code words from among
many decodes. (As discussed above, the entire output width
of the holding register, including the lookahead bits, is avail-
able to multiplexer 312 and the appropriate bits (correspond-
ing to the half decoder that has missed) are selected based on
a selection signal from selection unit 314, and are routed to
full decoder 310.

Note that the exemplary values of 128, 28, and 27 can, in
the general case, be replaced with arbitrary values of M
(width of chunk of input data), N (size of input to each half
decoder), and K (N-1, number of lookahead bits) respec-
tively. Thus, M bits numbered zero through M-1 of an input
data stream 399 are fed to lookahead register 397 and then to
holding register 395. In the non-limiting example of FIGS. 3
and 4, M=128. Meanwhile, N-1 bits zero though N-2 (N=28
in the non-limiting example of FIGS. 3 and 4) are tapped from
the input stream 399 to a lookahead portion 393 of holding
register 395. The main portion 391 of holding register 395
thus includes bits zero through M-1 of the input data stream
399 while the lookahead tap has bypassed the lookahead
register 397 and thus lookahead portion 393 of holding reg-
ister 395 includes the N-1 bits zero though N-2 (N=28 in the
non-limiting example of FIGS. 3 and 4) that are from the next
cycle since the lookahead register 397 was bypassed by the
tap. These are bits M through M+N-1, i.e., 129 through 155
in the non-limiting example. Again, for the avoidance of
confusion, note that the half-decoder slices are 28 bits wide
but there are only 27 lookahead bits plus one overlap bit.

In some embodiments, the half-decoders each have 28 bit
inputs sampling the 128 bit data in 1 bit overlapping intervals,
therefore making speculation possible; and the full-decoder
has a 28 bit input multiplexed from one of M intervals of 28
bits from the M bit data, while the M-bit data is extended by
27 bits with the data from the next data cycle to be able to
decode 28 bit data crossing an M-bit boundary. The half-
decoder forwards its input to the full-decoder through the
multiplexer when it cannot decode the code word. Thus, in the
non-limiting example of FIG. 3, half decoder 302 has input

20

30

40

45

55

8

bits zero through N-1 (27), half decoder 304 has input bits
one through N (28), half decoder 306 has input bits P through
N+P-1, and so on.

The variable length code words are decoded by the full
decoder 310 (as needed), and by the half decoders 302, 304,
306, 308, as fixed length codes and placed in individual lanes
(here, sixteen lanes zero through 15) ready for L.Z dictionary
lookup.

FIG. 5 shows an exemplary coding tree. There are
16384+8192+ +141=32768 total occurrences;
64+32+ . . . +1+1=128 longer than 8 bit codeword occur-
rences; and 32+16+ . . . +1+1=64 longer than 9 bit codeword
occurrences. The probability of 16 half-decoders completing
in the same cycle for a 2°8 SRAM=94% while the probability
of 16 half-decoders completing in the same cycle for a 2°9
SRAM=97%. Note that many symbol distributions may
result in a more balanced tree, and a larger fraction of code
words may fall out of the half-decoder’s SRAM. Therefore, a
2710 entry or larger table may be desirable. Since this is all
data dependent, given the teachings herein, benchmark files
can be used by the skilled artisan to choose the table size. The
codes below the dashed line occur infrequently compared to
the codes above the dashed line; the codes above the dashed
line are found in the half decoders while those below the
dashed line are found only in the full decoder.

FIG. 6 shows a more balanced tree example. The data has
256 symbols in it; 25% of the symbols occur 400 times each;
25% occur 200; and 50% occur 100 times each. Eight sym-
bols implies four deep while 256 symbols implies nine deep.
Therefore a maximum of nine bits will encode the entire set of
256 symbols. If an eight-bit table is employed, that will leave
(100+100)/800=25% of the symbols outside the table. Again,
the codes below the dashed line occur infrequently compared
to the codes above the dashed line; the codes above the dashed
line are found in the half decoders while those below the
dashed line are found only in the full decoder. Here, an eight-
bit table may result in too many misses so that a nine-bit table
is preferable.

Consider now the full decoder 310 of FIGS. 3 and 4, shown
in more detail in FIG. 2. It contains the entire Huffman table,
with up to 288 Literal/Length symbols and up to 32 Distance
symbols. Each entry indicates the decoded symbol (9 bits);
the number of code word bits (1-15) (4 bits); and the appro-
priate control characters (e.g. invalid code word). There can
be up to 13 extra bits which are arguments of the code;
15+13=28. With, as noted, up to 288 Literal/Length symbols
and up to 32 Distance symbols, 288+32 is less than 512 (next
highest power of 2), implying that 512 TCAM entries should
be sufficient. The input is the bit sequence 110010111 corre-
sponding to the symbols PABQ. This is used as a key to query
the content-addressable memory (CAM). The CAM entries
(code words) may have zero, one, or “don’t care” (X) values
for each “ternary digit” The corresponding RAM entries
include the symbol and its length. The first “hit” in the CAM
is for 110XXX which corresponds to the symbol P, having a
three-bit length. The input is then shifted left three bits, and
the next “hit” is for OXXXXX which corresponds to the
symbol A, having a one-bit length. The input is then shifted
left one bit, and the next “hit” is for 10XXXX which corre-
sponds to the symbol B, having a two-bit length.

Consider now the half-decoders 302, 304, 306, 308. Each
half decoder contains a portion of the Huffman table and is
SRAM-based. Each half decoder stores frequent Length/Lit-
eral symbols and stores frequent Distance symbols. In one or
more non-limiting embodiments, the code words that are
decoded are 8-10 bits wide which results ina 2”8 to 2" 10 entry
SRAM. Each entry indicates:

US 9,252,805 B1

9

The symbol (9 bits)

Number of codeword bits (0-10) (4 bits)

Control characters (e.g. invalid codeword).

Wide SRAMs are desirable because the per-bit area is
smallest and the Huffman table can be loaded fast. Ten-bit
code words will result in less than 2°10 writes for the same
reason Huffman encoding works well, e.g., SRAM entries for
each row can be written in one cycle, if the “Don’t Care” bits
select within the row. For example, for the input code word
100000xxx, the SRAM location 100000, Entries 0-7 all con-
tain the same Symbol, Symlen In the best case, 128
writes to the 128 x144 SRAM will load the table.

Referring to FIG. 7, for code words not handled by the
half-decoder, the SRAM entry that the long code word
indexes will have a control bit that tells the system to look
elsewhere (that half decoder’s bits routed to full decoder via
multiplexer controlled by block 314 as discussed above). The
half decoder may have, for example, 2° or 2'° entries. Refer-
ring to 755, the half decoder will thus look at only the first 9
or 10 bits of the input. Because the most frequent symbols use
the smallest number of bits, and because the half decoder
includes only more frequently occurring symbols, the half
decoder will be able to find the code words it is capable of
deciphering by looking at only the first 9 or 10 bits. When the
first 9 or 10 bits are not defined, the bits are routed to the full
decoder as discussed above.

Furthermore regarding the half-decoders, attention should
now be given to FIG. 8. As seen therein, literals and distances
can be stored in separate tables 899, 897. From outside, it
appears as only a single table. Logic (the selection signal to
the multiplexer 895) chooses one table or the other. The
distance code is selected by context: if the previous symbol is
length, the logic tells the multiplexer to select distance table
897; if the previous symbol is literal, the logic tells the mul-
tiplexer to select literal length table 899. The multiplexer
output includes, as the case may be, Symbol, Symbol Len,
and any control bits.

Various optimizations are possible. For example, the num-
ber of half decoders may be reduced based on the expected
compression ratio. [f a 2:1 compression ratio is expected, the
input is ingested at % the rate of output, thus Y2 as many
half-decoders may be necessary; for example, an input width
of 8 bytes and an output width of 16 bytes. For uncompress-
ible data, the output rate will drop to the input rate.

FIG. 9 shows non-limiting exemplary performance data,
discussed above.

One or more embodiments advantageously decode mul-
tiple codes per cycle using TCAM and SRAM. This should be
distinguished from prior techniques where N results are
obtained in a parallel but only one result can be a valid code,
such that in such prior-art systems, only one Huffman symbol
per cycle is actually decoded.

The DEFLATE standard (more generally, dynamic tree-
based Huffman codes) need to be table-based; hence, one or
more embodiments employ SRAM or TCAM or both.

Note that one or more embodiments decode a single stream
in parallel as opposed to decoding multiple independent
streams decoded 1 symbol per cycle per stream.

One or more embodiments thus provide a parallel Huffman
data decoder including at least one half-decoder constructed
using SRAM, and at least one full-decoder constructed using
a Ternary CAM (TCAM), as well as a decoder selection unit
that chooses, from among many decodes, the valid decoded
code words. The exemplary Huffman decoder values of 128,
28, 27 can, as noted, be replaced with arbitrary values of M,
N, and K respectively. In one or more embodiments, the
parallel decoder speculatively decodes up to 128 code words

10

15

20

25

30

35

40

45

50

55

60

65

10

in parallel in one clock cycle; the half-decoders are con-
structed with SRAM, typically with 9-10 address inputs using
only 512 to 1024 frequent code words; and full codeword
decoders are constructed using a Ternary CAM (TCAM)
containing all the code words including the infrequent ones as
well.

In some embodiments, the half-decoders each have 28 bit
inputs sampling the 128 bit data in 1 bit overlapping intervals,
therefore making speculation possible; and the full-decoder
has a 28 bit input multiplexed from one of M intervals of 28
bits from the M bit data, while the M-bit data is extended by
27 bits with the data from the next data cycle to be able to
decode 28 bit data crossing an M-bit boundary. The half-
decoder forwards its input to the full-decoder through the
multiplexer when it cannot decode the code word.

The elements in the figures are generally implemented in
hardware. In one or more embodiments, the lookahead reg-
ister 397 and holding register 395 are hardware registers that
can be implemented with known techniques; the full decoder
is implemented in TCAM; the half decoders are implemented
in SRAM (or alternatively, DRAM); the multiplexer 312 is
implemented using known multiplexing circuitry; and the
selection unit 314 is implemented in hardware state machines
and random logic.

Given the discussion thus far, it will be appreciated that, in
general terms, an exemplary parallel Huffman data decoder
for decoding data encoded in accordance with a Huffman
code, in accordance with an aspect of the invention, includes
a holding register 395 having a main portion 391 holding a
main data input, a lookahead portion 393 holding a lookahead
input, and a plurality of outputs. Also included are a plurality,
M, of half-decoders 302, 304, 306, 308, each having an input
coupled to a corresponding one of the plurality of outputs of
the holding register, and an output. The inputs each obtain,
from the outputs of the holding register, consecutive overlap-
ping portions of data in the main portion and the lookahead
portion of the holding register. Another element is a full
decoder 310 implemented in ternary content-addressable
memory. The full decoder has an input selectively connect-
able to obtain a given one of the overlapping portions of data,
and an output. A decoder selection and sequencing unit 314
has a plurality of inputs coupled to the outputs of the half-
decoders and the output of the full decoder, a selection output
that controls the selective connection of the full decoder
input, and a plurality of output lanes. The full decoder
includes all code words of the Huffman code, while the half-
decoders includes a subset of frequently-occurring code
words of the Huffiman code. When no code word not available
in the half-decoders is encountered, the half-decoders
decode, in parallel, in a single clock cycle, M of the fre-
quently-occurring code words. When a code word not avail-
able in the half-decoders is encountered (see FIG. 4), the
decoder selection and sequencing unit 314 causes to be
applied to the input of the full decoder 310, input intended for
a corresponding one of the half-decoders (e.g., 306), which
input includes the code word not available in the correspond-
ing one of the half-decoders.

In one or more embodiments, the half-decoders are imple-
mented in a less expensive technology than the ternary con-
tent-addressable memory, such as SRAM or DRAM.

Some embodiments further include a lookahead register
397 having a data input to obtain a data stream 399, and
having an output coupled to the main portion 391 of the
holding register 395. The holding register obtains the looka-
head input by tapping the data stream and bypassing the
lookahead register, as seen at 389.

US 9,252,805 B1

11

Some embodiments further include a multiplexer 312 hav-
ing a first input coupled to the holding register 395, a selection
input, and an output coupled to the input of the full decoder
310. The decoder selection and sequencing unit 314 causes to
be applied to the input of the full decoder 310, the input
intended for the corresponding one of the half-decoders (e.g.,
306), which input includes the code word not available in the
corresponding one of the half-decoders, by sending a selec-
tion signal to the selection input of the multiplexer 312.

In one or more embodiments, the overlapping portions of
data overlap by one bit.

Furthermore, given the discussion thus far, it will be appre-
ciated that an exemplary method for decoding, in parallel,
data encoded in accordance with a Huffman code, according
to another aspect of the invention, includes holding in a hold-
ing register 395 a main data input 391 and a lookahead input
393; and providing to a plurality, M, of half-decoders 302,
304, 306, 308, consecutive overlapping portions of the main
data input and the lookahead input. The half-decoders include
a subset of frequently-occurring code words of the Huffman
code. When no code word not available in the half-decoders is
encountered, a further step includes decoding, in parallel, in a
single clock cycle, M of the frequently-occurring code words.
On the other hand, when a code word not available in the
half-decoders is encountered, a further step includes applying
to an input of a full decoder 310 implemented in ternary
content-addressable memory, input intended for a corre-
sponding one of the half-decoders (e.g. 306), which input
includes the code word not available in the corresponding one
of the half-decoders. The full decoder includes all code words
of the Huffman code.

A further step in some cases includes implementing the
half-decoders in a less expensive technology than the ternary
content-addressable memory, such as SRAM or DRAM.

In some embodiments, a further step includes holding the
main data input in a lookahead register 397 while the looka-
head input (see 389) bypasses the lookahead register.

In some embodiments, the applying, to the input of the full
decoder, the input intended for the corresponding one of the
half-decoders, is implemented with a multiplexer 312.
Exemplary Integrated Circuit and Design Structure Details

One or more exemplary methods as described herein can be
used in the fabrication, testing, or operation of integrated
circuit chips. The integrated circuit chips can be distributed
by the fabricator in raw wafer form (that is, as a single wafer
that has multiple unpackaged chips), as a bare die, or in a
packaged form. In the latter case the chip is mounted in a
single chip package (such as a plastic carrier, with leads that
are affixed to a motherboard or other higher level carrier) orin
a multichip package (such as a ceramic carrier that has either
or both surface interconnections or buried interconnections).
In any case the chip is then integrated with other chips, dis-
crete circuit elements, and/or other signal processing devices
as part of either (a) an intermediate product, such as a moth-
erboard, or (b) an end product. The end product can be any
product that includes integrated circuit chips.

FIG. 10 shows a block diagram of an exemplary design
flow 1900 used for example, in semiconductor IC logic
design, simulation, test, layout, and manufacture. Design
flow 1900 includes processes, machines and/or mechanisms
for processing design structures or devices to generate logi-
cally or otherwise functionally equivalent representations of
the design structures and/or devices described above and
shown in FIGS. 2, 3, 4, 7 and 8. The design structures pro-
cessed and/or generated by design flow 1900 may be encoded
on machine-readable transmission or storage media to
include data and/or instructions that when executed or other-

20

40

45

55

12

wise processed on a data processing system generate a logi-
cally, structurally, mechanically, or otherwise functionally
equivalent representation of hardware components, circuits,
devices, or systems. Machines include, but are not limited to,
any machine used in an IC design process, such as designing,
manufacturing, or simulating a circuit, component, device, or
system. For example, machines may include: lithography
machines, machines and/or equipment for generating masks
(e.g. e-beam writers), computers or equipment for simulating
design structures, any apparatus used in the manufacturing or
test process, or any machines for programming functionally
equivalent representations of the design structures into any
medium (e.g. a machine for programming a programmable
gate array).

Design flow 1900 may vary depending on the type of
representation being designed. For example, a design flow
1900 for building an application specific IC (ASIC) may
differ from a design flow 1900 for designing a standard com-
ponent or from a design flow 1900 for instantiating the design
into a programmable array, for example a programmable gate
array (PGA) or a field programmable gate array (FPGA)
offered by Altera® Inc. or Xilinx® Inc.

FIG. 10 illustrates multiple such design structures includ-
ing an input design structure 1920 that is preferably processed
by a design process 1910. Design structure 1920 may be a
logical simulation design structure generated and processed
by design process 1910 to produce a logically equivalent
functional representation of a hardware device. Design struc-
ture 1920 may also or alternatively comprise data and/or
program instructions that when processed by design process
1910, generate a functional representation of the physical
structure of a hardware device. Whether representing func-
tional and/or structural design features, design structure 1920
may be generated using electronic computer-aided design
(ECAD) such as implemented by a core developer/designer.
When encoded on a machine-readable data transmission, gate
array, or storage medium, design structure 1920 may be
accessed and processed by one or more hardware and/or
software modules within design process 1910 to simulate or
otherwise functionally represent an electronic component,
circuit, electronic or logic module, apparatus, device, or sys-
tem such as those shown in FIGS. 2, 3, 4, 7 and 8. As such,
design structure 1920 may comprise files or other data struc-
tures including human and/or machine-readable source code,
compiled structures, and computer-executable code struc-
tures that when processed by a design or simulation data
processing system, functionally simulate or otherwise repre-
sent circuits or other levels of hardware logic design. Such
data structures may include hardware-description language
(HDL) design entities or other data structures conforming to
and/or compatible with lower-level HDL design languages
such as Verilog and VHDL, and/or higher level design lan-
guages such as C or C++.

Design process 1910 preferably employs and incorporates
hardware and/or software modules for synthesizing, translat-
ing, or otherwise processing a design/simulation functional
equivalent of the components, circuits, devices, or logic struc-
tures shown in FIGS. 2, 3,4, 7 and 8 to generate a Netlist 1980
which may contain design structures such as design structure
1920. Netlist 1980 may comprise, for example, compiled or
otherwise processed data structures representing a list of
wires, discrete components, logic gates, control circuits, I/O
devices, models, etc. that describes the connections to other
elements and circuits in an integrated circuit design. Netlist
1980 may be synthesized using an iterative process in which
netlist 1980 is resynthesized one or more times depending on
design specifications and parameters for the device. As with

US 9,252,805 B1

13

other design structure types described herein, netlist 1980
may be recorded on a machine-readable data storage medium
or programmed into a programmable gate array. The medium
may be a non-volatile storage medium such as a magnetic or
optical disk drive, a programmable gate array, a compact
flash, or other flash memory. Additionally, or in the alterna-
tive, the medium may be a system or cache memory, buffer
space, or electrically or optically conductive devices and
materials on which data packets may be transmitted and inter-
mediately stored via the Internet, or other networking suitable
means.

Design process 1910 may include hardware and software
modules for processing a variety of input data structure types
including Netlist 1980. Such data structure types may reside,
for example, within library elements 1930 and include a set of
commonly used elements, circuits, and devices, including
models, layouts, and symbolic representations, for a given
manufacturing technology (e.g., different technology nodes,
32 nm, 45 nm, 90 nm, etc.). The data structure types may
further include design specifications 1940, characterization
data 1950, verification data 1960, design rules 1970, and test
data files 1985 which may include input test patterns, output
test results, and other testing information. Design process
1910 may further include, for example, standard mechanical
design processes such as stress analysis, thermal analysis,
mechanical event simulation, process simulation for opera-
tions such as casting, molding, and die press forming, etc.
One of ordinary skill in the art of mechanical design can
appreciate the extent of possible mechanical design tools and
applications used in design process 1910 without deviating
from the scope and spirit of the invention. Design process
1910 may also include modules for performing standard cir-
cuit design processes such as timing analysis, verification,
design rule checking, place and route operations, etc.

Design process 1910 employs and incorporates logic and
physical design tools such as HDL compilers and simulation
model build tools to process design structure 1920 together
with some or all of the depicted supporting data structures
along with any additional mechanical design or data (if appli-
cable), to generate a second design structure 1990. Design
structure 1990 resides on a storage medium or programmable
gate array in a data format used for the exchange of data of
mechanical devices and structures (e.g. information stored in
an IGES, DXF, Parasolid XT, JT, DRG, or any other suitable
format for storing or rendering such mechanical design struc-
tures). Similar to design structure 1920, design structure 1990
preferably comprises one or more files, data structures, or
other computer-encoded data or instructions that reside on
transmission or data storage media and that when processed
by an ECAD system generate a logically or otherwise func-
tionally equivalent form of one or more of the embodiments
of the invention shown in FIGS. 2, 3, 4, 7 and 8. In one
embodiment, design structure 1990 may comprise a com-
piled, executable HDL simulation model that functionally
simulates the devices shown in FIGS. 2, 3, 4, 7 and 8.

Design structure 1990 may also employ a data format used
for the exchange of layout data of integrated circuits and/or
symbolic data format (e.g. information stored in a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable format
for storing such design data structures). Design structure
1990 may comprise information such as, for example, sym-
bolic data, map files, test data files, design content files,
manufacturing data, layout parameters, wires, levels of metal,
vias, shapes, data for routing through the manufacturing line,
and any other data required by a manufacturer or other
designer/developer to produce a device or structure as
described above and shown in FIGS. 2, 3, 4, 7 and 8. Design

25

30

40

45

55

65

14

structure 1990 may then proceed to a stage 1995 where, for
example, design structure 1990: proceeds to tape-out, is
released to manufacturing, is released to a mask house, is sent
to another design house, is sent back to the customer, etc.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed.

The descriptions of the various embodiments ofthe present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. A parallel Huffman data decoder for decoding data
encoded in accordance with a Huffman code, said parallel
Huffman data decoder comprising:

a holding register having a main portion holding a main
data input, a lookahead portion holding a lookahead
input, and a plurality of outputs;

a plurality, M, of half-decoders, each having an input
coupled to a corresponding one of said plurality of out-
puts of said holding register, and an output, said inputs
each obtaining from said outputs of said holding register
consecutive overlapping portions of data in said main
portion and said lookahead portion of said holding reg-
ister;

a full decoder implemented in ternary content-addressable
memory, said full decoder having an input selectively
connectable to obtain a given one of said overlapping
portions of data, and an output;

a decoder selection and sequencing unit having a plurality
of inputs coupled to said outputs of said half-decoders
and said output of said full decoder, a selection output
that controls said selective connection of said full
decoder input, and a plurality of output lanes;

wherein:

said full decoder includes all code words of said Huffman
code;

said half-decoders includes a subset of frequently-occur-
ring code words of said Huftman code;

said half-decoders decode, in parallel, in a single clock
cycle, when no code word not available in said half-
decoders is encountered, M of said frequently-occurring
code words; and

when a code word not available in said half-decoders is
encountered, said decoder selection and sequencing unit
causes to be applied to said input of said full decoder,
input intended for a corresponding one of said half-

US 9,252,805 B1

15

decoders, which input includes said code word not avail -
able in said corresponding one of said half-decoders.

2. The parallel Huffman data decoder of claim 1, wherein
said half-decoders are implemented in a less expensive tech-
nology than said ternary content-addressable memory.

3. The parallel Huffman data decoder of claim 2, wherein
said less expensive technology comprises static random
access memory.

4. The parallel Huffman data decoder of claim 2, wherein
said less expensive technology comprises dynamic random
access memory.

5. The parallel Huffman data decoder of claim 1, further
comprising a lookahead register having a data input to obtain
a data stream, and having an output coupled to said main
portion of said holding register, wherein said holding register
obtains said lookahead input by tapping said data stream and
bypassing said lookahead register.

6. The parallel Huffman data decoder of claim 1, further
comprising a multiplexer having a first input coupled to said
holding register, a selection input, and an output coupled to
said input of said full decoder, wherein said decoder selection
and sequencing unit causes to be applied to said input of said
full decoder, said input intended for said corresponding one of
said half-decoders, which input includes said code word not
available in said corresponding one of said half-decoders, by
sending a selection signal to said selection input.

7. The parallel Huffman data decoder of claim 1, wherein
said overlapping portions of data overlap by one bit.

8. A design structure tangibly embodied in a non-transitory
machine readable medium for designing, manufacturing, or
testing an integrated circuit, the design structure comprising a
parallel Huffman data decoder for decoding data encoded in
accordance with a Huffman code, said parallel Huffman data
decoder in turn comprising:

a holding register having a main portion holding a main
data input, a lookahead portion holding a lookahead
input, and a plurality of outputs;

a plurality, M, of half-decoders, each having an input
coupled to a corresponding one of said plurality of out-
puts of said holding register, and an output, said inputs
each obtaining from said outputs of said holding register
consecutive overlapping portions of data in said main
portion and said lookahead portion of said holding reg-
ister;

a full decoder implemented in ternary content-addressable
memory, said full decoder having an input selectively
connectable to obtain a given one of said overlapping
portions of data, and an output;

a decoder selection and sequencing unit having a plurality
of inputs coupled to said outputs of said half-decoders
and said output of said full decoder, a selection output
that controls said selective connection of said full
decoder input, and a plurality of output lanes;

wherein:

said full decoder includes all code words of said Huffman
code;

said half-decoders includes a subset of frequently-occur-
ring code words of said Huffman code;

said half-decoders decode, in parallel, in a single clock
cycle, when no code word not available in said half-
decoders is encountered, M of said frequently-occurring
code words; and

when a code word not available in said half-decoders is
encountered, said decoder selection and sequencing unit
causes to be applied to said input of said full decoder,
input intended for a corresponding one of said half-

10

15

20

25

30

40

45

55

60

65

16

decoders, which input includes said code word not avail -
able in said corresponding one of said half-decoders.

9. The design structure of claim 8, wherein, in said parallel
Huffman data decoder, said half-decoders are implemented in
aless expensive technology than said ternary content-addres-
sable memory.

10. The design structure of claim 9, wherein, in said par-
allel Huffman data decoder, said less expensive technology
comprises static random access memory.

11. The design structure of claim 9, wherein, in said par-
allel Huffman data decoder, said less expensive technology
comprises dynamic random access memory.

12. The design structure of claim 8, wherein said parallel
Huffman data decoder further comprises a lookahead register
having a data input to obtain a data stream, and having an
output coupled to said main portion of said holding register,
wherein said holding register obtains said lookahead input by
tapping said data stream and bypassing said lookahead reg-
ister.

13. The design structure of claim 8, wherein said parallel
Huffman data decoder further comprises a multiplexer having
afirst input coupled to said holding register, a selection input,
and an output coupled to said input of said full decoder,
wherein said decoder selection and sequencing unit causes to
be applied to said input of said full decoder, said input
intended for said corresponding one of said half-decoders,
which input includes said code word not available in said
corresponding one of said half-decoders, by sending a selec-
tion signal to said selection input.

14. The design structure of claim 8, wherein, in said par-
allel Huffman data decoder, said overlapping portions of data
overlap by one bit.

15. A method for decoding, in parallel, data encoded in
accordance with a Huffman code, said method comprising:

holding in a holding register a main data input and a loo-

kahead input;
providing to a plurality, M, of halt-decoders, consecutive
overlapping portions of said main data input and said
lookahead input, said half-decoders including a subset
of frequently-occurring code words of said Huffman
code;
when no code word not available in said half-decoders is
encountered, decoding, in parallel, in a single clock
cycle, M of said frequently-occurring code words;

when a code word not available in said half-decoders is
encountered, applying to an input of a full decoder
implemented in ternary content-addressable memory,
input intended for a corresponding one of said half-
decoders, which input includes said code word not avail -
able in said corresponding one of said half-decoders,
said full decoder including all code words of said Huff-
man code.

16. The method of claim 15, further comprising imple-
menting said half-decoders in a less expensive technology
than said ternary content-addressable memory.

17. The method of claim 15, further comprising imple-
menting said half-decoders in static random access memory.

18. The method of claim 15, further comprising imple-
menting said half-decoders in dynamic random access
memory.

19. The method of claim 15, further comprising holding
said main data input in a lookahead register while said loo-
kahead input bypasses said lookahead register.

20. The method of claim 15, wherein said applying to said
input of said full decoder said input intended for said corre-
sponding one of said half-decoders is implemented with a
multiplexer.

